Long Distance Q-Resolution with Dependency Schemes
نویسندگان
چکیده
Resolution proof systems for quantified Boolean formulas (QBFs) provide a formal model for studying the limitations of state-of-the-art search-based QBF solvers that use these systems to generate proofs. We study a proof system that combines two proof systems supported by the solver DepQBF: Q-resolution with generalized universal reduction according to a dependency scheme and long distance Q-resolution. We show that the resulting proof system—which we call long-distance Q(D)-resolution—is sound for the reflexive resolution-path dependency scheme—in fact, we prove that it admits strategy extraction in polynomial time. This comes as an application of a general result, by which we identify a whole class of dependency schemes for which long-distance Q(D)-resolution admits polynomial-time strategy extraction. As a special case, we obtain soundness and polynomial-time strategy extraction for long distance Q(D)-resolution with the standard dependency scheme. We report on experiments with a configuration of DepQBF that generates proofs in this system.
منابع مشابه
Dependency Schemes in QBF Calculi: Semantics and Soundness
We study the parametrization of QBF resolution calculi by dependency schemes. One of the main problems in this area is to understand for which dependency schemes the resulting calculi are sound. Towards this end we propose a semantic framework for variable independence based on ‘exhibition’ by QBF models, and use it to define a property of dependency schemes called full exhibition. We prove tha...
متن کاملDependency Schemes and Q-resolution
We propose Q(D)-resolution, a proof system for Quantified Boolean Formulas. Q(D)-resolution is a generalization of Q-resolution parameterized by a dependency scheme D. This system is motivated by the generalization of the QDPLL algorithm using dependency schemes implemented in the solver DepQBF. We prove soundness of Q(D)-resolution for a dependency scheme D that is strictly more general than t...
متن کاملInternational Workshop on Quantified Boolean Formulas 2013 1 Informal Workshop Report 2
We propose Q(D)-resolution, a proof system for Quantified BooleanFormulas. Q(D)-resolution is a generalization of Q-resolution parameterized bya dependency scheme D. This system is closely related to search-based QCNFsolvers that use dependency schemes to generalize the QDPLL algorithm, suchas DepQBF. We prove thatQ(D)-resolution is sound by presenting a transfor-mation of Q...
متن کاملDependency Learning for QBF
Quantified Boolean Formulas (QBFs) can be used to succinctly encode problems from domains such as formal verification, planning, and synthesis. One of the main approaches to QBF solving is Quantified Conflict Driven Clause Learning (QCDCL). By default, QCDCL assigns variables in the order of their appearance in the quantifier prefix so as to account for dependencies among variables. Dependency ...
متن کاملShortening QBF Proofs with Dependency Schemes
We provide the first proof complexity results for QBF dependency calculi. By showing that the reflexive resolution path dependency scheme admits exponentially shorter Q-resolution proofs on a known family of instances, we answer a question first posed by Slivovsky and Szeider in 2014 [30]. Further, we conceive a method of QBF solving in which dependency recomputation is utilised as a form of in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016